Preview

Plant Biology and Horticulture: theory, innovation

Advanced search

Water regime and photosynthetic apparatus functioning in some evergreen Ligustrum L. species under the hydrothermal stress

Abstract

The results of the studies in the real water deficit dynamics and leaf relative water content (RWC) in some evergreen Ligustrum L. species during the summer 2023 and 2024, as well as changes in water-holding forces and parameters of solar-induced chlorophyll fluorescence (SIF) under various combinations of air temperature and humidity have been presented.

It has been shown that under hydrothermal stress increase, the species L. delavayanum Har. and L. ovalifolium Hassk. were characterized by especially unstable water regime indicators. For the species L. compactum (Wall. ex G. Don) Hook.f. & Thomson ex Brandis and L. ovalifeolium, under conditions simulating dry winds, the least resistance to water stress has been revealed.

It has been found out that the dry wind imitation caused balance disruption between photochemical and enzymatic reactions and a slowdown in electron transport from the reaction center of PS II to plastoquinone in Ligustrum species. The functional link of PS II with high sensitivity to the water deficiency increase was a parameter characterizing the processes of primary charge separation in the electron-transport chain (oxidation/reduction of plastoquinones).

About the Authors

Yu. V. Plugatar
Никитский ботанический сад – Национальный научный центр РАН
Russian Federation


R. A. Pilkevich
Никитский ботанический сад – Национальный научный центр РАН
Russian Federation


V. N. Gerasimchuk
Никитский ботанический сад – Национальный научный центр РАН
Russian Federation


T. B. Gubanova
Никитский ботанический сад – Национальный научный центр РАН
Russian Federation


References

1. Belyaeva Yu.V. Results of a study of the water-holding capacity of leaf blades of Betula pendula Roth, growing under conditions of anthropogenic influence (using the example of the city of Togliatti) // News of the Samara Scientific Center of the Russian Academy of Sciences. 2014. Vol. 16. No. 5 (5). P. 1654-1659. (In Rus.)

2. Goncharova E.A. Water status of cultivated plants and its diagnostics / Ed. acad. V.A. Dragavtseva. St. Petersburg: VIR, 2005. 112 p.. (In Rus.)

3. Gol'tsev V.N., Kalaji Х.M., Paunov M., Baba V., Horacek T., Mojski Ya., Kocel X., Allakhverdiyev S.I. Use of variable chlorophyll fluorescence to asses physiological state of the photosynthetic apparatus of plants. Plant Physiology. 2016. 63. No. 6. P. 881-912. (In Rus.)

4. Gruza G.V., Rankova E.Ya. Observed and expected climate changes in Russia: air temperature. Obninsk: FSBI “VNIIGMI-MDC”, 2012. 194 p. (In Rus.)

5. Kushnirenko М.D., Кurchatova G.P., Кryukova Е.V. Methods for assessing the drought tolerance of fruit plants. Shtiintsa, 1976. 21 р. (In Rus.)

6. Korsakova S.P. Assessment of future climate changes on the Southern Coast of Crimea // Ecosystems. 2018. Issue. 15(45). P. 151-165. (In Rus.)

7. Korsakova S.P., Korsakov P.В. Changes in climate norms on the Southern coast of Crimea over the past 90 years. Plant Biology and Horticulture: theory, innovation. 2023. 2(167):84– 95. (In Rus.). DOI: 10.25684/2712-7788-2023-2-167-84-95

8. Lysenko V.S., Varduni T.V., Soier V.G., Krasnov V.P. Plant chlorophyll fluorescence as an environmental stress сharacteristic: a theoretical basis of the method application // The fundamental researches. 2013. 4(1):112-120. (In Rus.). DOI: 10.31360/2225-3068-2018-67-142-152

9. Nekrasov E.I., Ionova E.V. Water-holding capacity of winter soft wheat varieties under different growing conditions // Tauride Bulletin of Agrarian Science. 2020. 3(23):122-130.). (In Rus.)

10. Physiological and biophysical methods in fruit crops breeding. Guidelines. / Lishchuk A.I. (eds). / M., 1991. 67 p. (In Rus.)

11. Pereira W.E., de Siqueira D.L., Martínez C.A., Puiatti M. Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. // J. Plant Physiol. 2000. Vol. 157. P. 513-520.

12. Romanov V.A., Galelyuka I.B., Sarakhan Ie.V. Portable fluorometer Floratest and specifics of its application // Sensor Electronics and Microsystem Technol. 2010. Vol. 1 (7). № 3. P. 39-44. 19(2286). P. 2-23. DOI:10.3390/ijms19102866.

13. Schreiber U., Bilger W., Neubauer C. Chlorophyll fluores-cence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. – In: Ecophysiology of photosynthesis. (Ecological Studies, vol 100). Berlin, Heidelberg, New York, 1994. Р. 49-70.

14. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V. Simultaneous in vivorecording of prompt and delayed fluorescence and 820-nm reflection changes during dryingand after rehydration of the resurrection plant Haberlea rhodopensis. // Biochim. Biophys. Acta. 2010. Vol. 1797. P. 1313-1326.

15. Ryan G. Transpiration and whole-tree conductance in ponderosa pine trees of different heights // Oecologia. 2000. Vol. 124. N 4. P. 553–560.


Review

For citations:


Plugatar Yu.V., Pilkevich R.A., Gerasimchuk V.N., Gubanova T.B. Water regime and photosynthetic apparatus functioning in some evergreen Ligustrum L. species under the hydrothermal stress. Plant Biology and Horticulture: theory, innovation. 2024;(3 (172)):43-52. (In Russ.)

Views: 51


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7788 (Print)