The effect of nanoparticles on the organogenesis of various plant species in vitro
Abstract
Currently, the use of nanoparticles (NPs) has demonstrated their positive effects on explant sterilization, micropropagation, callus induction, organogenesis, somatic embryogenesis, genetic transformation and production of secondary metabolites. The aim of this work was to study the effect of nanoparticles of selenium (Se), silicon oxide (SiO2) and tricalcium phosphate (Ca3(PO4)2) on the growth and development in vitro of Chrysanthemum × morifolium Ramat.; Ficus carica L.; Fragaria × ananassa Dushesne; Lamium glaberrimum (K. Koch) Taliev and Rosa L. microshoots. Explants were cultivated on Murashige and Skoog (MS) medium supplemented with various concentrations of NPs. An ambiguous effect of NPs on morphogenesis in vitro was revealed depending on the genotype of the crop being studied and the type and concentration of NPs used. It was found that Se NPs had a positive effect on the growth of microshoots and the formation of leaves of chrysanthemum, fig and Lamium glaberrimum. Analysis of the chlorophyll a and b content in the leaves of plants cultivated on media with Se NPs did not show a significant discrepancy between the control and experimental treatments. The exception was strawberry and rose microshoots: a concentration of 0.5 mg/l Se NPs in the nutrient medium caused a decrease in chlorophyll a/b values from 2.079/0.618 mg/g by weight to 1.272/0.293 mg/g and from 3.125/0.896 mg/g to 1.76/0.453 mg/g for strawberries and roses, respectively. The positive effect of SiO2 NPs at concentrations of 4.0 and 5.0 mg/l on adventitious shoot formation in fig explants was shown. It was revealed that the studied concentrations of TCP NPs affected the plant habitus, but did not contribute to shoot formation. There was no significant effect of the studied concentrations of NPS Se, SiO2 and Ca3(PO4)2 on the induction of shoot formation of the studied crops.
About the Authors
N. V. KorzinaRussian Federation
N N. Ivanova
Russian Federation
N. P. Lesnikova-Sedoshenko
Russian Federation
I. V. Zhdanova
Russian Federation
S. V. Chelombit
Russian Federation
P. A. Khvatkov
Russian Federation
S. V. Dolgov
Russian Federation
M. A. Fedotov
Russian Federation
References
1. Bezruchko E.V., Fedotova L.S. Plant-Friendly Silicon – a Factor in Sustainable Potato Production. Аgrochemistry, 2021. 8:70–81. DOI: 10.31857/S0002188121080032 (In Russian)
2. Butenko R.G. Cell biology of higher plants in vitro and biotechnology on their base: a training manual. Moscow: FBK-PRESS, 1999. 160 p. (In Russian)
3. Titov A.F., Kaznina N.M., Karapetyan T.A., Dorshakova N.V., Tarasova V.N. The Role of Selenium in the Life of Plants, Animals and Human // Advances in Current Biology. 2021. Vol. 141: 443–456. DOI: 10.31857/S0042132421050094 (In Russian)
4. Udalova Zh.V., Folmanis G.E., Fedotov M.A., Pelgunova L.A., Krysanova E.Yu., Khasanova F.K., Zinovieva S.V. Еffects of silicon nanoparticles on photosynthetic pigments and biogenic elements in tomato plants infected with root-knot nematode Meloidogyne incognita. Reports of the RAS. Biological Sciences. 2020. 495: 643–647. DOI: 10.31857/S2686738920060244 (In Russian)
5. Ali A., Mashwani Z.U.R., Raja N.I., Mohammad S., Ahmad M. S., Luna-Arias J.P. Exposure of Caralluma tuberculata to biogenic selenium nanoparticles as in vitro rooting agent: Stimulates morpho-physiological and antioxidant defense system // Plos one. 2024. Vol. 19 (4): e0297764. DOI: 10.1371/journal.pone.0297764
6. Al-Khayri J.M., Rashmi R., Surya Ulhas R., Sudheer W.N., Banadka A., Nagella P., Aldaej M.I., Rezk A.A., Shehata W.F., Almaghasla M.I. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels // Plants. 2023. Vol. 12 (2): 292. DOI: 10.3390/plants12020292
7. Ardekani M.R.S., Abdin M.Z., Nazima N., Mohammed S. Calcium phosphate nanoparticles a novel nano-viral gene delivery system for genetic transformation of tobacco // International Journal of Pharmacy and Pharmaceutical Sciences. 2014. Vol. 6 (6). P. 605–609.
8. Darwesh O.M., Hassan S.A., Abdallatif A. M. Improve in vitro multiplication of olive shoots using environmental-safe chitosan, selenium, and silver nanostructures // Biointerface Research in Applied Chemistry. 2023. Vol. 13 (5). P. 419-431. https://doi.org/10.33263/BRIAC135.419
9. Das S., Ghosh S., Bakshi A., Khanna S., Bindhani B.K., Parhi P.K., Kumar R. Nanotechnology and Plant Biotechnology: The Current State of Art and Future Prospects. In: B. Sarkar, A. Sonawane (eds.) // Biological Applications of Nanoparticles. Singapore: Springer. 2023. P. 101-120. DOI: 10.1007/978-981-99-3629-8_6
10. Duhan J.S., Kumar R., Kumar N., Kaur P., Nehra K., Duhan S. Nanotechnology: The new perspective in precision agriculture // Biotechnology Reports. 2017. Vol. 15. P. 11–23. DOI: 10.1016/j.btre.2017.03.002
11. Hasanin M.S., Hassan S.A.M., Abdallatif A.M., Darwesh O.M. Unveiling the silver lining: examining the effects of biogenic silver nanoparticles on the growth dynamics of in vitro olive shoots // Microbial Cell Factories. 2024. Vol. 23 (1): 79. DOI: 10.1186/s12934-024-02346-9
12. Hayat F., Khanum F., Li J., Iqbal S., Khan U., Javed H.U., Razzaq M.K., Altaf M.A., Peng Y., Ma X., Li C., Tu P., Chen J. Nanoparticles and their potential role in plant adaptation to abiotic stress in horticultural crops: A review // Scientia Horticulturae. 2023. Vol. 321 (1): 112285. DOI: 10.1016/j.scienta.2023.112285
13. Khai H.D., Mai N.T.N., Tung H.T., Luan V.Q., Cuong D.M., Ngan H.T.M., Chau N.H., Buu N.Q., Vinh N.Q., Dung D.M., Nhut D.T. Selenium nanoparticles as in vitro rooting agent, regulates stomata closure and antioxidant activity of gerbera to tolerate acclimatization stress // Plant Cell, Tissue and Organ Culture. 2022. Vol. 150 (1). P. 113–128. DOI: 10.1007/s11240-022-02250-3
14. Khattab S., El Sherif F., AlDayel M., Yap Y. K., Meligy A., Ibrahim H.I.M. Silicon dioxide and silver nanoparticles elicit antimicrobial secondary metabolites while enhancing growth and multiplication of Lavandula ofcinalis in-vitro plantlets // Plant Cell, Tissue and Organ Culture. 2022. Vol. 149 (1). P. 411–421. DOI: 10.1007/s11240-021-02224-x
15. Kim D.H., Gopal J., Sivanesan I. Nanomaterials in plant tissue culture: the disclosed and undisclosed // Royal Society of Chemistry Advances. 2017. Vol. 7: 36492. DOI: 10.1039/c7ra07025j
16. Kyte L., Kieyn J., Scoggins H., Bridgen M. Plants from test tubes: an introduction of micropropagation. Portland, Oregon: Timber Press, 2013. 269 р.
17. Lichtenthaler H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents // Biochemical Society Transaction. 1983. Vol. 11 (5). P. 591–592. DOI: 10.1042/bst0110591
18. Murashige Т., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue culture // Physiologia Plantarum. 1962. Vol. 15 (3). Р. 473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
19. Naqvi, S., Maitra, A. N., Abdin, M. Z., Akmal, M. D., Arora, I., Samim, M. D. Calcium phosphate nanoparticle mediated genetic transformation in plants // Journal of Materials Chemistry. 2012. Vol. 22 (8). P. 3500-3507. DOI:10.1039/c2jm11739h
20. Sharma S., Gupta S., Jain R., Kachhwaha S. SiO 2 nanoparticles as elicitor for increased rebaudioside-A in Stevia rebaudiana micropropagated in solid and liquid cultures: a comparative study // Plant Cell, Tissue and Organ Culture. 2023. Vol. 155 (2). P. 541–552. DOI: 10.1007/s11240-023-02604-5
21. Singh Y., Kumar U., Panigrahi S., Balyan P., Mehla S., Sihag P., Sagwal.V., Singh K.P., White J.C., Dhankher O.P. Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook // Plant Physiology and Biochemistry. 2023. Vol. 203:108004. DOI: 10.1016/j.plaphy.2023.108004
22. Sivanesan I., Park S.W. The role of silicon in plant tissue culture // Frontiers in Plant Science. 2014. Vol. 5: 571. DOI: 10.3389/fpls.2014.00571
23. Song J., Yu S., Yang R., Xiao J., Liu J. Opportunities for the use of selenium nanoparticles in agriculture // NanoImpact. 2023. Vol. 31: 100478. DOI: 10.1016/j.impact.2023.100478
24. Whanger P.D. Selenocompounds in plants and animals and their biological significance // Journal of the American College of Nutrition. 2002. Vol. 21 (3). P. 223–232. DOI: 10.1080/07315724.2002.10719214
Review
For citations:
Korzina N.V., Ivanova N.N., Lesnikova-Sedoshenko N.P., Zhdanova I.V., Chelombit S.V., Khvatkov P.A., Dolgov S.V., Fedotov M.A. The effect of nanoparticles on the organogenesis of various plant species in vitro. Plant Biology and Horticulture: theory, innovation. 2024;(2 (171)):22-34. (In Russ.)