Preview

Plant Biology and Horticulture: theory, innovation

Advanced search

Plant polycethylene compounds and prospects for their study

https://doi.org/10.36305/2712-7788-2022-4-165-82-96

Abstract

The article presents modern data on the study of polyacetylene compounds of plant origin. Polyacetylenes form a distinct specialized group of natural compounds that are found in 24 families of higher plants, with the highest abundance and diversity in the families Asteraceae, Apiaceae, Araliaceae, Campanulaceae, Olacaceae, Pittosporaceae, and Santalaceae. The article contains information about the structure, physicochemical properties, features of accumulation and localization in organs and parts of plants, biosynthesis, dynamics of accumulation, detection, isolation and identification, as well as the main pharmacological properties of plant polyacetylenes. The presented information can also be used to develop methods for establishing the authenticity and assessing the quality of medicinal plant raw materials containing polyacetylenes as the main group of active substances. The prospects for further study of these compounds as a significant reserve for the search and development of new drugs are discussed. The necessity of targeted selection and genetic research is noted to obtain new varieties of medicinal plants - sources of new types of medicinal plant materials containing polyacetylene compounds.

About the Author

D. A. Konovalov
Пятигорский медико-фармацевтический институт - филиал ФГБОУ ВО ВолгГМУ Минздрава России
Russian Federation


References

1. Коновалов Д.А. Ароматические полиацетиленовые соединения сем. Asteraceae и их хемотаксономическое значение // Растительные ресурсы. 1996. Т. 32, вып. 4. С. 84-98

2. Коновалов Д.А. Полиацетиленовые соединения растений семейства Asteraceae (обзор) // Химико-фармацевтический журнал. 2014б. Т. 48. № 9. С. 36-53

3. Коновалов Д.А. Природные полиацетиленовые соединения // Фармация и фармакология. 2014а. № 4 (5). С. 23-48

4. Коновалов Д.А., Коновалова О.А., Челомбитько В.А. Спектрофотометрический метод количественного определения капиллина в эфирном масле Artemisia scoparia Waldst. et Kit. // Химико-фармацевтический журнал. 1992. Т. 26. № 3. С. 73-75

5. Коновалов Д.А., Насухова А.М., Оробинская В.Н. Биологические и фармакологические свойства полиацетиленовых соединений высших растений // Современная наука и инновации. 2017. № 3 (19). С. 177-191

6. Коновалов Д.А., Оробинская В.Н., Писаренко О.Н. Антиоксиданты плодов и овощей // Современная наука и инновации. 2013. № 4 (4). С. 76-83

7. Коновалов Д.А. Разработка методов хемотаксономического прогнозирования поиска биологически активных веществ в растениях сем. астровые (роды Тысячелистник, Полынь и др.) // Aвтореферат диссертации на соискание ученой степени доктора фармацевтических наук. Пятигорская государственная фармацевтическая академия. Пятигорск, 2000. 46 c

8. Насухова А.М., Коновалов Д.А. Природные полиацетиленовые соединения. Обзор начального этапа исследований // Фармация и фармакология. 2014. №1. С. 3-8

9. Природные полиацетиленовые соединения (классификация, биогенез, идентификация, распространение): монография / Д. А. Коновалов. Москва: Знание-М, 2021. 190 с

10. Растительные ресурсы СССР: Цветковые растения, их химический состав, использование; Семейство Asteraceae (Compositae). СПб.: Наука, 1993. 352 с

11. Харборн Дж. Введение в экологическую биохимию. М.: Наука, 1985. 189 с

12. Baranska M., Schulz H. Spatial tissue distribution of polyacetylenes in carrot root. Analyst. 2005. Vol. 130(6). P. 855-859

13. Baranska M., Schulz H., Christensen L.P. Structural changes of polyacetylenes in American ginseng root can be observed in situ by using Raman spectroscopy // Journal of agricultural and food chemistry. 2006. Vol. 54 (10). P. 3629-3635

14. Baranska M., Schulz H., Baranski R., Nothnagel T., Christensen L.P. In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots // Journal of Agricultural and food Chemistry 2005. Vol. 53 (17). P. 6565-6571

15. Bohlmann F. Naturally-occurring acetylenes, in Lam. Chemistry and Biology of Naturally-Occurring Acetylenes and Related Compounds (NOARC) // Bioactive Molecules. 1988. Vol. 7. P. 1-19

16. Bohlmann F., Burkhardt T., Zdero C. Naturally Occurring Acetylenes. London, 1973. 547 p

17. Christensen L.P. Biological activities of naturally occurring acetylenes and related compounds from higher plants // Recent Res. Devel. Phytochem. 1998. Vol. 2. P. 227-257

18. Christensen L.P., Jakobsen H.B. Polyacetylenes: Distribution in higher plants, pharmacological effects and analysis // Chromatographic Science Series. 2008. Vol. 99. P. 757-816

19. Christensen L.P. Bioactive C17 and C18 acetylenic oxylipins from terrestrial plants as potential lead compounds for anticancer drug development // Molecules. 2020). Vol. 25(11). Art. 2568

20. Christensen L.P., Brandt K. Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis //j. Pharm. Biomed. Anal. 2006. Vol. 41. P. 683-693

21. Czepa A., Hofmann T. Quantitative studies and sensory analyses on the influence of cultivar, spatial tissue distribution, and industrial processing on the bitter off-taste of carrots (Daucus carota L) and carrot products // J Agric Food Chem. 2004. Vo l. 52. P. 4508-4514

22. Dembitsky V.M. Anticancer activity of natural and synthetic acetylenic lipids // Lipids. 2006. Vol. 41, N.10. P. 883-924

23. Ebel J. Phytoalexin synthesis: the biochemical analysis of the induction process // Ann Rev Phytopathol. 1986. Vol. 24. P.235-264

24. Gao X., Wang P., Wu L., Liu J., Fang Y., Tian J., Zhou Y., Du G. & Qin X. Pharmacokinetics-pharmacodynamics and tissue distribution analysis of Low Polar extract of Xiaoyao Powder combined with rat model of chronic unpredictable mild stress // Journal of Liquid Chromatography & Related Technologies. 2019. Vol. 42. P. 7-8

25. Garrod B., Lewis B.G. Cis-heptadeca-1,9-diene-4,6-diyne-3,8-diol, an antifungal polyacetylene from carrot root tissue // Physiol Plant Pathol. 1978. Vol. 13. P. 241-246

26. Garrod B., Lewis B.G. Location of the antifungal compound falcarindiol in carrot root tissue // Trans Br Mycol Soc. 1979. Vol. 72. P. 515-517

27. Hansen-Møller J., Hansen S.L., Christensen L.P., Jespersen L., Brandt K., Haraldsdóttir J. Quantification of polyacetylenes by LC-MS in human plasma after intake of fresh carrot juice (Daucus carota L.) // DIAS report Horticulture. 2002. Vol. 29. P. 137-138

28. Haraldsdóttir J., Jespersen L., Hansen-Møller J., Hansen S.L., Christensen L.P., Brandt K. Recent developments in bioavailability of falcarinol // DIAS report Horticulture. 2002. Vol. 29. P. 24-28

29. Hostettmann K., Marston, A., Twenty years of research into medicinal plants: results and perspectives // Phytochem. Rev. 2002. Vol. 1. P. 275

30. Konovalov D.A., Chelombit'ko V.A. The composition of essential oil of Artemisia scoparia Waldst et Kit. during growth // Rastitelnye Resursy. 1991. Vol. 27. Vol. 1. P. 135-139

31. Lin M., Zhang W., Su J. Toxic polyacetylenes in the genus Bupleurum (Apiaceae) distribution, toxicity, molecular mechanism and analysis. J. Ethnopharmacol. 2016. Vol. 193. P. 566-573

32. Minto R.E., Blacklock B.J. Biosynthesis and Function of Polyacetylenes and Allied Natural Products // Prog. Lipid Res. 2008. Vol. 47, Is.4. P. 233-306

33. Mullins A.J., Webster G., Kim H.J., Zhao J., Petrova Y.D., Ramming C.E., Jenner M., Murray J., Connor T.R., Hertweck C., Challis G.L., Mahenthiralingam E. Discovery of the pseudomonas polyyne protegencin by a phylogeny-guided study of polyyne biosynthetic gene cluster diversity // MBio. 2021. Vol. 12. Art. 71521

34. Saita T., Matsunaga, H., Yamamoto, H., Nagumo, F., Fujito, H., Mori, M. and Katano, M. (1994). A highly sensitive enzyme-linked immunosorbent assay (ELISA) for antitumor polyacetylenic alcohol, panaxytriol // Biological and Pharmaceutical Bulletin, 17(6), pp. 798-802

35. Santos J.A., Santos C.L., Freitas F., Menezes P.H., Freitas, J.C. Polyacetylene Glycosides: Isolation, Biological Activities and Synthesis // Chem. Rec. 2022. Vol. 22. Art. e202100176

36. Singh R., Tiwari P., Sharma B., Guerrero-Perilla C., Coy-Barrera E. Analysis of polyacetylenes // In Recent Advances in Natural Products Analysis. 2020. P. 707-722)

37. Wang Y. Polyacetylenes from Artemisia borealis and their biological activities // Phytochemistry. 1990. Vol. 29. P. 3101

38. Warner S. Database of polyacetylene-containing foods for estimation of population intake // Proceedings of the Nutrition Society. 2016. Vol. 75. №. OCE3. E93

39. Xie Q., Wang C. Polyacetylenes in herbal medicine: A comprehensive review of its occurrence, pharmacology, toxicology, and pharmacokinetics (2014-2021) // Phytochemistry. 2022. Vol. 201. Art. 113288

40. Коновалов Д.А. Цитотоксические свойства полиацетиленовых соединений растений. II // Растительные ресурсы. 2014. Т. 50. № 2. С. 279-296

41. Rollinger J.M. Lignans, phenylpropanoids and polyacetylenes from Chaerophyllum aureum L. (Apiaceae) // Z. Naturforsch. 2003.Vol. 553. P. 58


Review

For citations:


Konovalov D.A. Plant polycethylene compounds and prospects for their study. Plant Biology and Horticulture: theory, innovation. 2022;(4 (165)):82-96. (In Russ.) https://doi.org/10.36305/2712-7788-2022-4-165-82-96

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7788 (Print)