Bacterial insectoacaricides for plant protection: study and prospects of application
https://doi.org/10.36305/2712-7788-2021-3-160-50-62
Abstract
Entomopathogenic preparations based on the bacterium Bacillus thuringiensis Berliner (BT) play a key role in the biological protection of plants. The share of BT in the global market of biopesticides is about 90-95%. Specificity, environmental safety and spectrum of action are the features that allow preparations based on this bacterium to occupy an important place among plant protection products. Bacillus thuringiensis is a gram-positive soil bacterium that affects invertebrates. Due to the huge range of hosts, BT has become a leading producer of biopesticides. The entomocidal effect of the bacterium is provided either by toxins containing protein crystals (Cry and Cyt) produced in the stationary phase, or by soluble toxins of the Vip and Sip families secreted by vegetative cells. At the same time, numerous non-toxic virulence factors of BT were found: metalloproteases, chitinases, etc. Bacillus thuringiensis is characterized by poly-enzymatic properties: enzymes from the class of hydrolases have been detected, so the bacterium simultaneously shows activity against harmful insects and phytopathogenic fungi. The antibacterial properties of BT and the ability to stimulate plant growth, inducing a plant protection system against diseases, are noted. Toxicological studies conducted for 50 years around the world have shown the safety of BT and its metabolites, including insecticidal proteins and other substances, which allows them to be widely used in plant protection practice. A new direction in plant protection is the use of transgenic plants based on Bacillus thuringiensis . By introducing BT genes, or rather cry-endotoxin genes into plants, transgenic plants that are resistant to harmful insects are obtained.
About the Author
Т. V. DolzhenkoRussian Federation
References
1. Belousova M.E. Entomocidal activity of new strains and experimental insecticides based on Bacillus thuringiensis Berliner. Extended abstract of dissertation of Cand. Biol. sciences: 06.01.07 — plant protection / Russian State University — Moskow Agricultural Academy named after K.A. Timiryazev. St. Petrsburg, 2019. 20 .
2. Belousova M.E., Grishechkina S.D., Ermolova V.P., Antonets K.S., Mardanov A.V., Rakitin A.L., Beletskii A.V., Ravin N.V., Nizhnikov A.A. Genome sequencing Bacillus thuringiensis strain var. Darmstadiensis 56 and the study of the insecticidal activity of a biological drug based on it. Agricultural biology. 2020. 55 (1): 87-96. https://doi.org/10.15389/agrobiology.2020.1.87
3. Grishechkina S.D., Ermolova V.P., Romanova T.A., Nizhnikov A.A. Search for natural izolates of Bacillus thuringiensis for the creation of environmentally safe biological preparations // Agricultural biology. 2018. 53 (5): 1062-1069. https://doi.org/10.15389/agrobiology.2018.5.1062
4. Grishechkina S.D., Kovalenko T.K. The effektiveness of the microbiological preparation Bacicol against the 28-point potato cow Henosepilachna vigintioctomaculata Motsch. (Coleoptera, Coccinellidae) in the Far East // Bulletin of Plant Protection. 2017. № 1 (91): 48-52.
5. Dolzhenko T.V. Biologization and ecological optimization of the range of crop protection products from pest. Extended abstract of dissertation of doct. biol. scinces: 06.01.07 – plant protection / FGBOU VO «Russian State Agrarian Universitetu – Moscow Agricultural Academy named after K.A. Timiryazev». St. Peterburg - Pushkin, 2017. 44 .
6. Zhuchenko A.A. The role of biological methods in the adaptive-integrated plant protection sistem // Biological plant protection-the basis for the stabilization of agroecosystems. Vol. 5. Krasnodar, 2008. 5-32.
7. Kalmykova G.V. Screening of antagonistic and growth-stimulating aktivity of Bacillus thuringiensis strains// Biological plant protection-the basis for the stabilization of agroecosystems. Vol. 9. Krasnodar, 2016. 238-240.
8. Kandybin N.V., Patyka T.I., Ermolova V.P., Patyka V.F. Microbiokontrol of insect abundance and its dominant Bacillus thuringiensis. St. Peterburg, Pushkin, 2009. 244.
9. Kolomiets E.I. Contribution of microbiological science to the development of agricultural technologies in the Republic of Belarus. Science and innovations. 2016. 6: 23-25.
10. Kolomiets E.I. Biological meams of plant protection as a basis for improving and stabilizing agrobiocenoses // The information byulletin VPRS MOBB. 2017. 52: 172-179.
11. Muntyan E.M. Perspects for creating multifunctional plant protects based on Bacillus thuringiensis // Biological plant protection-the basis for the stabilization of agroecosystems. Vol. 9. Krasnodar, 2016. 269-272.
12. Patyka T.I. Bacillus thuringiensis in the microbiological control of the insect population. Extended abstract of dissertation of Doct. Agricultural Sciences: 03.00.07 - Microbiology / Uman State Agrarian University. Uman, 2010. 39 p.
13. Ryabchinskaya T.A., Kharchenko G.L. Ecologization of apple tree protection from harmful organisms. Moskow: Rosinformagrotech, 2006. 188 p.
14. Trepashko L.I., Bykovskaya A.V., Nemkevich M.G. The Effectiveness of the use of bacterial biological products to reduce the harmfulness of the corn stem moth // Mikrobial biotechnologies: fundamental and applied aspects. Minsk: Belorusskaya navuka, 2017. P.188-190.
15. Khuzhamshukurov N.A., Gazieva Sh.K., Agzamova Kh.K. System analysis of the effectiveness of the biological preparation Antibac Uz against cotton scoops on cotton // The information byulletin of the VPRS MOBB. 2017, 52. 308-313.
16. Shternshis M.V., Belyaev A.A., Tsvetkova V.P., Shpatova T.V., Lelyak A.A., Bakhvalov S.A. Biological preparations based on bacteria of the genus Bacillus for plant health management. Novosibirsk: Publishing House of SB RAS, 2016. 233 p.
17. Yagodinskaya L.P. The effektiveness of acaritsides against phytophagous mites on fruit crops // Collection of scientific works of the SNBG. 2016. 142: 128-138.
18. Bravo A., Likitvivatanavong S., Gill S.S., Soberón M. Bacillus thuringiensis: A story of a successful bioinsecticide // Insect Biochemistry and Molecular Biology. 2011. Vol. 41. P. 423-431.
19. Crickmore N., Berry C., Paneerselvam S., Mishra R., Connor T.R., Bonning B.C. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins // Journal of Invertebrate Pathology. 2020. https://doi.org/10.1016/j.jip.2020.107438
20. Ibrahim M.A, Griko N., Junker M. Bacillus thuringiensis. A genomics and proteomics perspective // Bioengineered Bugs. 2010. Vol. 1 (1). P. 31-50.
21. Krieg A. Bacillus thuringiensis Berliner. Über seine Biologie, Pathogenie und Anwendung in der Biologischenschädlingsbekämpfung (In memoriam Dr. Ernst Berliner (1988-1957)) // Mitteilungenaus der Biologischenbundesanstalt für Land- und Förstwirtschaft. Berlin, Dahlem. Heft 103, April. 1961. P. 7-66.
22. Malovichko Y.V., Nizhnikov A.A., Antonets K.S. Repertoire of the Bacillus thuringiensis virulence factors unrelated to major classes of protein toxins and its role in specificity of host-pathogen interactions // Toxins. 2019. Vol. 11 (6). P. 347. https://doi.org/10.3390/toxins11060347
23. Palma L., Muñoz D., Berry C., Murillo J., Caballer P. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity // Toxins. 2014. Vol. 6 (12). P. 3296-3325.
24. Ruiu L. Microbial Biopesticides in Agroecosystems // Agronomy. 2018. Vol. 8 (11). P. 235.
25. Sanchis V., Bourguet D. Bacillus thuringiensis: Applications in agriculture and insect resistance management // Agronomy for Sustainable Development. 2008. Vol. 28. P. 11-20.
26. Shikov A.E., Malovichko Y.V., Skitchenko R.K., Nizhnikov A.A., Antonets K.S. No more tears: mining sequencing data for novel Bt Cry toxins with CryProcessor // Toxins. 2020. Vol. 12. P. 204. https://doi.org/Https://doi.org/10.3390/toxins12030204.
27. Soberón M., López-Díaz J.A., Bravo A. Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms // Peptides. 2013. Vol. 41. P. 87-93.
28. The Manual of Biocontrol Agents. BCPC. Alton, UK, 2014. 304 r.
29. Vachon V., Laprade R., Schwartz J-L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review // Journal of Invertebrate Pathology. 2012. Vol. 111. P. 1-12.
30. Xu C.; Wang B.C.; Yu Z.; Sun M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins // Toxins. 2014. Vol. 6. P. 2732-2770.
31. Yılmaz S., Ayvaz A., Akbulut M., Azizoglu U., Karabörklü S. A novel Bacillus thuringiensis strain and its pathogenicity against three important pest insects // Journal of Stored Products Research. 2012. Vol. 51. P. 33-40.
32. Yu X., Liu T., Sun Z., Guan P., Zhu J., Wang S., Li S., Deng Q., Wang L., Zheng A. Co-expression and synergism analysis of Vip3Aa29 and Cyt2Aa3 insecticidal proteins from Bacillus thuringiensis // Current microbiology. 2012. Vol. 4. P. 326-331
Review
For citations:
Dolzhenko Т.V. Bacterial insectoacaricides for plant protection: study and prospects of application. Plant Biology and Horticulture: theory, innovation. 2021;(160):50-60. (In Russ.) https://doi.org/10.36305/2712-7788-2021-3-160-50-62