Preview

Plant Biology and Horticulture: theory, innovation

Advanced search

Principles of construction of integrated pest protection systems of fruit crops

https://doi.org/10.36305/2712-7788-2021-1-158-52-63

Abstract

The main features are identified and a model of the formation of the patho-entomoacarocomplex of fruit plantations is developed. The species composition of the orchard agrocenosis is formed mainly over a 5-7-year period and reaches a peak by the age of 14. It is established that the specific biodiversity of pathogens and phytophages in orchards is primarily due to the presence of a food base that ensures their vital activity. The population density of harmful species depends on the age of the orchard, agricultural techniques of cultivation, insecticides used and meteorological conditions of the growing season. In dry years, there is an increase in the number of representatives of the order Acariformes, and in moderately wet years - representatives of Aphidinea. With an increase in the population density of phytophages, there are entomoacariphages trophically associated with them, the species and quantitative composition of which depends on the presence of pests in the orchard and is controlled by the use of pesticides. The use of pesticides has a detrimental effect on the number of entomoacariphages, which destabilizes the phytosanitary state of the agroecosystem, reduces its stability and balance, so biotic factors - predators, parasites and entomopathogenic organisms - in industrial orchards with a high pesticide load do not play a significant role in limiting the number of phytophages. Systems for the protection of fruit stands should be based on systematic monitoring of the phytosanitary status of a particular agrocenosis, taking into account the determination of the number of dominant species, their environmental requirements, as well as the peculiarities of biology, phenology and population dynamics. When drawing up a plan of protective measures for a particular orchard, its age and cultivation system should be taken into account. When choosing a preparation, preference should be given to low-toxic pesticides with low consumption rates or biological preparations, which will help to stabilize the phytosanitary state of the agrocenosis.

About the Author

E. B. Balykina
Федеральное государственное бюджетное учреждение науки «Никитский ботанический сад - Национальный научный центр РАН
Russian Federation


References

1. Балыкина Е.Б. Экологические основы формирования энтомокомплекса яблоневых садов Германия: Lambert Academica Publishing, 2012. 100 с.

2. Балыкина Е.Б. Этапы формирования энтомокомплекса яблоневого сада // Вестник защиты растений. 2012. № 2. С. 62-65.

3. Балыкина Е.Б., Ягодинская Л.П., Рыбарева Т.С., Корж Д.А. Важнейшие фитофаги садовых агроценозов Крыма. Симферополь: ИТ «АРИАЛ», 2020. 352 с.

4. Копылов В.И., Беренштейн И.Б. и др. Плодоводство с основами экологии и питомниководства. (Учебники для вузов. Специальная литература). Санкт-Петеребург: «Лань», 2020. 396 с.

5. Митрофанов В.И., Манько А.В., Балыкина Е.Б. Проблемы гарантий сохранения урожая и стабильности агроценоза в садоводстве. Iнтегрований захист рослин на початку 21 столiття: тез. докл. Київ, 2004. С. 307-312.

6. Митрофанов В.И. Управление фитопатосистемами в ХХI веке. Симферополь: ИТ «Ариал», 2020. 95 с.

7. Павлюшин В.А., Вилкова Н.А., Сухорученко Г.И., Нефедова Л.И. Формирование агроэкосистем и становление сообществ вредных видов биотрофов // Вестник защиты растений. 2016. № 2 (88). с. 5-15

8. Павлюшин В.А., Вилкова Н.А., Сухорученко Г.И., Нефедова Л.И. Функционирование агробиоценозов и типы их отклика на антропогенные воздействия // Вестник защиты растений. 2016b. 4(90): 5-18.

9. Gorina V., Balykina E., Korzh D., Yagodinskaya L. Comparative effectiveness of various protection systems of the pear from Psilla pyri L. in the Crimea // The First International Symposium on Botanical Gardens and Landscapes (BGL 2019). December 2-4, 2019. P. 33.

10. Barzman M., Bàrberi P., Boonekamp P., Nicholas A E. Birch Eight principles of integrated pest management // Agronomy for Sustainable Development. 2015. Vol. 35(4). 1119 - 1215. DOI: 10.1007/s13593-015-0327-9

11. Giraud M. Postharvest diseases of pome fruits in Europe: perspectives for integrated control / IOBC/WPRS. 2012. Vol. 84. pp. 257-263.

12. Pastori P.L., Ariol C.J., Botton M., Monteiro L.B. Stoltman and Agenor Mafra-Neto Integrated control of two tortricid (Lepidoptera) pests in apple orchards with sex pheromones and insecticides // Rev. Colomb. Entomol. 2012. Vol. 38 (2). P. 224-230.

13. Damos P., Escudero-Colomar L.-A., Ioriatti C. Integrated Fruit Production and Pest Management in Europe: The Apple Case Study and How Far We Are From the Original Concept // Insects. 2015. Vol. 6(3). P. 626-657. DOI:10.3390/insects6030626

14. Penvern S., Bellon S. Peach orchard protection strategies and aphid communities: Towards an integrated agroecosystem approach // Crop Protection. 2010. Vol. 29(10). P. 1148-1156. DOI: 10.1016/j.cropro.2010.06.010


Review

For citations:


Balykina E.B. Principles of construction of integrated pest protection systems of fruit crops. Plant Biology and Horticulture: theory, innovation. 2021;(158):52-63. (In Russ.) https://doi.org/10.36305/2712-7788-2021-1-158-52-63

Views: 281


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7788 (Print)