Preview

Plant Biology and Horticulture: theory, innovation

Advanced search

Effect of weather-climatic conditions on intraannual stem radial increment in Quercus pubescens (Fagaceae) and Juniperus excelsa (Cupressaceae)

https://doi.org/10.36305/2019-4-153-5-19

Abstract

The aim of the work was to determine the most important environmental factors affecting the intra­annual radial growth of the native dominant species trees Quercus pubescens Willd and Juniperus excelsa M. Bieb., co-occurring in the semi-arid climate of the Southern coast of the Crimea. The analysis a 4-year high-resolution automatic point dendrometers dataset (2016-2019), which were non-invasively fixed to the tree stems at a height of 1.3 m. During the studied period, characterized by contrasting weather conditions, differences between tree species were revealed, both in the patterns of seasonal and daily stem radial growth and in the response plants to the effects of environmental conditions. Data analysis showed that on the Southern coast of the Crimea cambium activity in Q. pubescens is limited to one season with a period of intensive stem radial increment in May-June. In seasonal dynamics of stem radial increment in J. excelsa two peaks: in April-May and in September-October was revealed. The effect of precipitation on stem growth in total was higher than air temperatures, which confirms the assumption that on the Southern coast of the Crimea the main factor limiting the stem radial growth of Q. pubescens and J. excelsa is the moisture availability to the trees. It was found that the most significant to the stem radial increment in Q. pubescens were precipitation in May-June and in J. excelsa - precipitation in June and September-October. Higher plastic of intra-annual dynamics cambial activity in J. excelsa increases the adaptability of plants to drought and may provide them with an additional competitive advantage against co-occurring Q. pubescens in thermoaridization climatic conditions predicted for the Southern coast of the Crimea.

About the Authors

S. P. Korsakova
Никитский ботанический сад - Национальный научный центр РАН
Russian Federation


Yu. V. Plugatar
Никитский ботанический сад - Национальный научный центр РАН
Russian Federation


P. B. Korsakov
Никитский ботанический сад - Национальный научный центр РАН
Russian Federation


References

1. Ilnitsky О.A., Plugatar Yu. V, Korsakova S.P. Methodology, instrument base and practice use of phytomonitoring. Simferopol: PH «ARIAL», 2018. 238 p.

2. Korsakova S.P. The evaluation of future climate change in the Southern coast of the Crimea //Ekosistemy. 2018. 15(45): 151-165.

3. Opanasenko N.Е. Crimean skeleton soils fertility model and their classification for fruit crops growing // Works of the State Nikita Botanical Gardens. 2015. 140: 230-242.

4. Plugatar Yu.V. Forests of the Crimea. Simferopol : PH «ARIAL», 2015. 385 p.

5. Plugatar Yu. V, Korsakova S.P., Ilnitsky О.А. Ecological monitoring of the Southern Coast of the Crimea. Simferopol: PP «ARIAL», 2015. 164 p.

6. Braekke F.H., Kozlowski P.P. Shrinkage and swelling of stems of Pinus resinosa and Betulapapyrifera in northern Wisconsin // Plant Soil 1975. Vol. 43. P. 387-410.

7. Camarero J.J., Olano J.M., Parras A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates // New Phytologist. 2010. Vol. 185(2). P. 471-480. DOI: 10.1111/j.1469-8137.2009.03073.X

8. Campbell G.S., Norman J.M. An Introduction to Environmental Biophysics, 2nd ed. Springer-Verlag, New York, USA, 1998. 286 p.

9. Coiissement J.R, De Swaef T., Lootens P., Roldmi-Ruiz I., Steppe K. Introducing turgor-driven growth dynamics into functional-structural plant models // Annals of Botany. 2018. Vol. 121(5). P. 849-861. DOI: 10.1093/aob/mcx144

10. De Swaef T., De Schepper V, Vandegehuchte M.W., Steppe K. Stem diameter variations as a versatile research tool in ecophysiology // Tree Physiology. 2015. Vol. 35(10). P. 1047-1061. DOI: 10.1093/treephys/tpv080

11. Deslauriers A., Rossi S., Anfodillo T. Dendrometer and intra-annual tree growth: What kind of information can be inferred // Dendrochronologia. 2007b. Vol. 25(2). P. 113-124. DOI: 10.1016/j.dendro.2007.05.003

12. Deslauriers A., Anfodillo T., Rossi S., Carraro V Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees // Tree Physiology. 2007a. Vol. 27(8), P. 1125-1136. DOI: 10.1093/treephys/27.8.1125

13. Duchesne L., Houle D., D Orangeville L. Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Quebec, Canada // Agricultural and forest meteorology. 2012. Vol. 162-163. P. 108-114. DOI: 10.1016/j.agrformet.2012.04.016

14. Efimov VV., Volodin E.M., Anisimov A.E. Modeling of the Black Sea region climate changes in the XXI century // Physical Oceanography. 2015. Vol. 2. P. 3-13. DOI: 10.22449/1573-160X-2015-2-3-13

15. Gri’car J., Frisian P., Luis M.D., Novak K., Longares L.A., Castillo E.M., Longcires L.A., Frisian P. Lack of annual periodicity in cambial production of phloem in trees from mediterranean areas // IAWA journal. 2016. Vol. 37. P. 349-364. DOI: 10.1163/22941932-20160138

16. Gȕney A., Gȕlsoy S., Sentȕrk Ȍ., Niessner A, Kȕppers M. Environmental control of daily stem radius increment in the montane conifer Cedrus libcini Il Journal of Forestry Research. 2019. P. 1-13. DOI: 10.1007/sl 1676-019-00983-0 Available at:

17. https://link.springer.eom/article/10.1007/sll676-019-00983-0#citeas. (accessed 10.11.2019)

18. Herzog K.M., Hȁsler R., Thum R. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration // Trees 1995. Vol. 10. P. 94-101.

19. Korsakova S.P., Plugatar Yu.V., Ilnitsky O.A., KarpukhinM. A research on models of the photosynthetic light response curves on the example of evergreen types of plants // AgronomyResearch. 2019. Vol. 17(2). P. 518-539. DOI: 10.15159/AR.19.065

20. Kreyling J., Buhk C., Backhaus S., Hallinger M., Huber G., Huber L., Jentsch A., Konnert M., Thiel D., Wilmking M., Beierkuhnlein C. Local adaptations to frost in marginal and central populations of the dominant forest tree Fagus syIvatica L. common garden experiments //Ecology and Evolution. 2014. Vol. 4. P. 594-605. DOI: 10.1002/ece3.971

21. Liu X., Nie Yu., Wen F. Seasonal dynamics of stem radial increment of Pinus taiwanensis Hayata and its response to environmental factors in the Lushan Mountains, Southeastern China // Forests. 2018. Vol. 9(7): 387. DOI: 10.3390/f9070387 Available at: https://www.mdpi.com/1999-4907/9/7/387/htm. (accessed 10.11.2019)

22. Mendivelso H.A., Camarero J.J., GuMrrez, E., Zuidema P.A. Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: Short-term tolerance vs. long-term sensitivity // Agricultural and Forest Meteorology. 2014. Vol. 188 (15). P. 13-23. DOI: 10.1016/j.agrformet.2013.12.010

23. MucinaL., Bȕltmann H., Dierßen K, Theurillat J.P., Raus T., Carni A., Sumberovd K, Willner W., Dengler J., Garcia R.G., ChytryM., HdjekM., Di Pietro R., Iakushenko D., Pallas J., Daniëls F.J.A., Bergmeier E., Santos Guerra A., Ermakov N., Valachovic M., Schaminee J.H.J., Lysenko T., Didukh Ya.P., Pignatti S., Rodwell J. S., CapeloJ., Weber HE., Solomeshch A., Dimopoulos P., Aguiar C., Hennekens S.M., Tichy L. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities // Applied Vegetation Science. 2016. Vol. 19(51) P. 3-264. DOI: 10. Ill 1/avsc. 12257

24. Oberhuber W. Soil water availability and evaporative demand affect seasonal growth dynamics and use of stored water in co-occurring saplings and mature conifers under drought //Trees. 2017. Vol. 31(2). P. 467-478. DOI: 10.1007/s00468-016-1468-4

25. Plugatar Y.V., Klymenko Z.K., Ulanovskaya I. V., Zykova V.K., Plugatar S.A. Prospects for the use of the Crimean flora resources in the floriculture // Acta Horticulturae. 2019. Vol. 1240. P. 65-68. DOI: 10.17660/ActaHortic.2019.1240.10

26. Prislan P., Gricar J., Cufar K., de Luis M., Merela M., Rossi S. Growing season and radial growth predicted for Fagus sylvatica under climate change // Climatic Change. 2019. Vol. 153(1-2). P. 181-197. DOI: 10.1007/s10584-019-02374-0

27. Rother M.T., Huffman JM., Harley G.L., Platt W.J., Jones N., Robertson K.M., Orzell S.L. Cambial Phenology Informs Tree-Ring Analysis of Fire Seasonality in Coastal Plain Pine Savannas//Fire Ecology. 2018. Vol. 14. P. 164-185. DOI: 10.4996/fireecology.140116418

28. van der Maaten E., Pape J., van der Maaten-Theunissen M., Scharnweber T., Smiljani 'cM., Cruz-Garcia R., WilmkingM. Distinct growth phenology but similar daily stem dynamics in three co-occurring broadleaved tree species // Tree Physiology. 2018. Vol. 38(12). P. 1820-1828. DOI: 10.1093/treephys/tpy04

29. van der Maaten E., Bouriaud O., van der Maaten-Theunissen M., Mayer H., Spiecker H. Meteorological forcing of day-to-day stem radius variations of beech is highly synchronic on opposing aspects of a valley // Agricultural and Forest Meteorology. 2013. Vol. 181(15). P. 85-93. DOI: 10.1016/j.agrformet.2013.07.009

30. Ziaco E., Biondi F. Tree growth, cambial phenology, and wood anatomy of limber pine at a Great Basin (USA) mountain observatory // Tree. 2016. Vol. 30(5). P. 1507-1521. DOI: 10.1007/s00468-016-1384-7

31. Zweifel R., Haeni M., Buchmann N., Eugster W. Are trees able to grow in periods of stem shrinkage? //NewPhytologist. 2016. Vol. 211. P. 839-849. DOI: 10.1111/nph.13995


Review

For citations:


Korsakova S.P., Plugatar Yu.V., Korsakov P.B. Effect of weather-climatic conditions on intraannual stem radial increment in Quercus pubescens (Fagaceae) and Juniperus excelsa (Cupressaceae). Plant Biology and Horticulture: theory, innovation. 2019;(153):5-19. (In Russ.) https://doi.org/10.36305/2019-4-153-5-19

Views: 1107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7788 (Print)