Preview

Plant Biology and Horticulture: theory, innovation

Advanced search

BIOREACTOR’S IN PRODUCTION OF PLANTING MATERIAL IN ORNAMENTAL CROPS

Abstract

Conventional micropropagation with solid or semi solid media is a typically labor-intensive technique of propagating elite clones of commercial ornamental crops and also limited because of high labor costs. Other disadvantages are costly devices, low proliferation rate, long multiplication cycle before hardening and transplanting, and higher mortality resulting from pathogens. These disadvantages are the major drawbacks of conventional micropropagation for scaling up of potential ornamental crop species. At present application of bioreactors is limited in ornamental micropropagation, however it can be utilized as an efficient tool for the production of elite planting material. Bioreactor not only facilitates optimum growth conditions but also offers many advantages to achieve both maximum yield and high quality of propagules, or to bring down the production costs as low as possible. Now, this technology gaining popularity in developing countries for commercialized micropropagation of ornamental crops including Orchids , Lilium, Hippeastrum, Gladiolus, Spathiphyllum, Anthurium, Chrysanthemum, Gerbera, Anoectochilus and Tulips etc., via thin cell layer, meristem culture, organogenesis and somatic embryogenesis. A range of bioreactors were developed and utilized to verify the effectiveness for mass propagation of ornamental plants. Protocorm-like bodies (PLBs) were induced from flower stalk of Phalaenopsis by using suspension culture under bioreactors. Many Lilium varieties were successfully multiplied in bioreactors. Lilium cv. Marcopolo showed a positive growth of bulblets nearly 10 folds faster than that of the solid medium in balloon type bubble bioreactor (BTBB). Modern bioreactor technology along with liquid culture gives a wider control over conventional micropropagation system. However, monitoring of important process parameters such as temperature, pH, and concentrations of oxygen and carbon dioxide inside the bioreactor vessel needs to be worked out for each plant.

About the Authors

C. Aswath
ICAR-Indian Institute of Horticultural Research
Russian Federation


B. Narendera
ICAR-Indian Institute of Horticultural Research
Russian Federation


References

1. Adelberg J., Fari M.G. Applied physiology and practical bioreactors for plant propagation. Propag // Ornam. Plants. - 2010. - Vol. 10. - P. 205 - 219.

2. Aitken-Christie J., Kozai T., Takayama, S. Automation and environmental control in plant tissue culture, General introduction and overview. Kluwer Academic Publishers: Dordrecht: Netherlands, 1995. - 118 p.

3. Cardarelli M., Cardona C.M. Influence of ozone treatments on in vitro propagation of Lilium in bioreactor // Acta Hortic. Proc. VI Int. Symp. on Production and Establishment of Micropropagated Plants. - 2017. (in press)

4. De Hertogh A., Schepeen J.M., Kamenetsky R., Le Nard M., Okubo H. The Globalization of Flower Bulb Industry // CRC Press. - 2012. - P. 1-16.

5. Frometa O.M., Morgado Maritza M.E., Silva J.A.T., Morgado D.T.P., Gradaille M.A.D. In vitro propagation of Gerbera jamesonii Bolus ex Hooker f. in a temporary immersion bioreactor // Plant Cell Tiss Organ Cult. - 2017. - Vol. 129. - P. 543 - 551.

6. Haberlandt G. Kulturversuche mit isolierten Pflanzenzellen // Sitzungsber. Math. Naturwiss. Kl. Kais. Akad. Wiss. - 1902. - Vol. 111. - P. 69 - 92.

7. Hee H.B., Woo Y.B., Hoe D.H. Micropropagation of Lilium cv. Casa Blanca using bulblets section in Bioreactor // Korean Journal Plant Tissue Culture. - 2001. - Vol. 28(3). - P. 135 - 140.

8. Ho C.W., Jian W.T., Lai H.C., Plant regeneration via somatic embryogenesis from suspension cell cultures of Lilium x formolongi hort. using a bioreactor system // In Vitro Cell. Dev. Biol. Plant. - 2006. - Vol. 42. - P. 240 - 246.

9. Kim S.J., Hahn E.J., Paek K.Y., Murthy H.N. Application of bioreactor culture for large scale production of Chrysanthemum transplants // Acta Hortic. - 2003. - Vol. 625. - P. 187 - 91.

10. Kim Y.S., Hahn E.J., Paek K.Y. A large scale production of lilium bulblets through bioreactor culture. Proc. IV IS on In Vitro Cult. & Hort. Breeding Eds. // Acta Hortic. - 2001. - Vol. 560. - P. 383 - 386.

11. Kunitake H., Imamizo H., Mii H. Somatic embryogenesis and plant regeneration from immature seed-derived calli of ugosa rose (Rosa rugosa Thurb.) // Plant Sci. - 1993. - Vol. 90. - P. 187 - 94.

12. Levin R., Vasil I.K. An integrated and automated tissue culture system for mass propagation of plants // In Vitro Cell. Dev. Biol. Plant. - 1989. - Vol. 25. - P. 21 - 27.

13. Lian M.L., Chakrabarty D., Paek K.Y. Bulblet formation from bulbscale segments of Lilium Oriental Hybrid 'Casablanca' using bioreactor system // Biol. Plant. - 2003. - Vol. 46. - P. 199 - 203.

14. Nhut D.T., Hanh N.T.M., Tuan P.Q., Nquyet L.T.M., Tram N.T.H., Chinh N.C., Nguyen N.H., Vinh D.N. Liquid culture as a positive condition to induce and enhance quality and quantity of somatic embryogenesis of Lilium longiflorum // Sci Hortic. - 2006. - Vol. 110. - P. 93-97.

15. Paek K.Y., Chakrabarty D., Hahn E.J. Application of bioreactor systems for large production of horticultural and medicinal plants // Plant Cell Tissue Organ Culture. - 2005. - Vol. 8. - P. 128 - 300.

16. Park S.Y., Murthy H.N., Yoeup P.K. Mass multiplication of protocorm-like bodies using bioreactor system and subsequent plant regeneration in Phalaenopsis // Plant Cell, Tissue and Organ Culture.- 2000. - Vol. 63. - P. 67 - 72.

17. Preil W. General introduction: a personal reflection on the use of liquid media for in vitro culture // In A. K. Hvoslef-Eide and W. Preil, eds. Liquid culture systems for in vitro plant propagation. Springer: Dordrecht: Netherlands, 2005. - P. 118.

18. Pueschel A.K., Schwenkel H.G., Winkelmann. Inheritance of the ability for regeneration via somatic embryogenesis in Cyclamen persicum // Plant Cell Tissue Organ Cult. - 2003. - Vol. 72. - P. 43 - 51.

19. Sanchez J., Daquinta M., Capote I., Jaime A., Silva T., Chadwick B. Frequency of Immersion and Paclobutrazol Application Affect the Propagation of Zantedeschia sp. Var. 'Treasure' Shoots in a Temporary Immersion System // Floriculture and Ornamental Biotechnology, Global Science Books, 2009. - Vol. 3 (1). - P. 46 - 48.

20. Schwenkel H.G. Development of a reproducible regeneration protocol for Cyclamen // In: Schwenkel HG, editor. Reproduction of Cyclamen persicum Mill. through somatic embryogenesis using suspension culture systems. COST Action Brussels: European Commission. - 2001. - P. 8 - 11.

21. Sreedhar R.V., Venkatachalam L., Thimmaraju R., Bhagyalakshmi N., Narayan M.S., Ravishankar G.A. Direct organogenesis from leaf explants of Stevia rebaudiana and cultivation in bioreactor // Biologia Plantarum. - 2008. - Vol. 52 (2). - P. 355 - 360.

22. Takahashi S., Matsubara K., Yamagata H., Morimoto T. Micropropagation of virus free bulblets of Lilium longiflorum by tank culure // Acta Hortic. - 1996. - Vol. 319. - P. 83 - 88.

23. Takayama S., Misawa M. Mass propagation of Begonia x hiemalis plantlets by shake culture // Plant Cell Physiol. - 1981. - Vol. 22. - P. 461 - 467.

24. Zaidi N., Khan N.H., Zafar F., Zafar S.I. Bulbous and cormous monocotyledonous ornamental plants // In Vitro. Science Vision. - 2000. - Vol. 6 (1). - P. 58 - 73.

25. Ziv, M. Simple bioreactors for mass propagation of plants // Plant Cell Tiss. Org. Cult. - 2005. - Vol. 81. - P. 277 - 285.


Review

For citations:


Aswath C., Narendera B. BIOREACTOR’S IN PRODUCTION OF PLANTING MATERIAL IN ORNAMENTAL CROPS. Plant Biology and Horticulture: theory, innovation. 2017;(145):175-181. (In Russ.)

Views: 165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-7788 (Print)